

Science that Saves Lives

Pages 1-4 Science that Saves Lives with Dr. Mika Sovak

Watch the Video $\underline{\text{Here}}$

Materials Required for This Lesson/Activity		
Quantity	Description	
Per group (4-6 students)	Blindfolds	
Per group (4-6 students)	Ruler	
Per group (4-6 students)	Balance/ Scale	
Per group (4-6 students)	Thermometer	
Per group (4-6 students)	Graduated Cylinder	
Per group (4-6 students)	Metal water bottle	
Per group (4-6 students)	Plastic water bottle	
Per group (4-6 students)	Soda can	
	Collection of rocks	
	Vegetables or fruits (frozen and fresh)	
	Balls (soccer, basketball, football, baseball, tennis ball)	
	Shoe box/cardboard box	

Pages 5-7 Science that Saves Lives with Dr. Greg Gage

Watch the Video <u>Here</u>

Materials Required for This Lesson/Activity	
Quantity	Description
	Dominos
3 rolls	String
3 rolls	Таре
100	Rubber bands (various sizes)
6-8	Clamp stands
	Recyclable materials (from the cafeteria like paper towel tubes, milk containers (crates or cartons), paper bags, cardboard boxes)

2	Buckets
20	Marbles
	Legos
3	Tennis ball/ baseball/ golf ball
20	Dixie Cups
15-30	Balloons
5	Matchbox cars
10	Wooden dowels
Per student	laptops

Science That Saves Lives featuring Dr. Mika Sovak

Grade/ Grade Band 6-12	Topic: Communication and Team Building	
	ientists to be able to communicate their results	
	n. This lesson is designed to teach students why	it is important to collaborate with others that
don't always think like them.		
Performance Expectation(s):		
	s of a design problem with sufficient precision	
account relevant scientific principles and pote	ential impacts on people and the natural enviro	onment that may limit possible solutions.
US ETS1 2 Decign a solution to a complex re-	al-world problem by breaking it down into smal	llar mara managaabla problems that can be
solved through engineering.	al-world problem by breaking it down into small	ner, more manageable problems that can be
Specific Learning Outcomes:		
Students will be able to design a protocol that	is inclusive for different types of learners	
	vith a diverse team is beneficial to communicatir	ng with others.
Narrative / Background Information		
Prior Student Knowledge:		
Students can define protocol.		
Students understand how to design a protocol		
Science & Engineering Practices: Analyzing and Interpreting Data-Analyzing	Disciplinary Core Ideas:	Crosscutting Concepts: Influence of Science, Engineering, and
data in 6-8 builds on K-5 experiences and	ETS1.B-Developing Possible Solutions -There are systematic processes for evaluating	Technology on Society and the Natural
progresses to extending quantitative analysis	solutions with respect to how well they	World
to investigations, distinguishing between	meet the criteria and constraints of a	 The uses of technologies and any
correlation and causation, and basic	problem. (<u>MS-ETS1-3</u>)	limitations on their use are driver
statistical techniques of data and error		by individual or societal needs,
analysis.	Sometimes parts of different solutions can	desires, and values; by the finding
Analyze and interpret data to	be combined to create solution that is better	of scientific research; and by
determine similarities and	than any of its predecessors. (<u>MS-ETS1-3</u>)	differences in such factors as
differences in findings (<u>MS-ETS1-3</u>)		climate, natural resources, and
Constructing Explanations and Designing	When evaluating solutions, it is important to	economic conditions. (MS-ETS1-1
Solutions- Constructing explanations and	the into account a range of constraints	
designing solutions in 9-12 builds on K-8	including cost, safety, reliability, and	
experiences and progresses to explanation	aesthetics and to consider social, cultural,	
and designs that are supported by multiple	and environmental impacts. (<u>HS-ETS1-3</u>)	
and independent student-generated sources		
of evidence consistent with scientific ideas,		
principles, and theories.Design a solution to a complex		
 Design a solution to a complex real-world problem, based on 		
scientific knowledge,		
student-generated sources of		
evidence, prioritized criteria, and		
tradeoff considerations.		
(HS-ETS1-2)		
Possible Preconceptions/Misconceptions:		
	ice is purely analytical and does not involve crea	tivity. This may be in part due to the fact that
Students may believe that the process of scien	ice is purely analytical and does not involve crea inear and rigid representation of the process of s	

LESSON PLAN – 5-E Model

ENGAGE: Opening Activity – Access Prior Learning / Stimulate Interest / Generate Questions:

Today's lesson begins with viewing Dr. Mika Sovak's video <u>Science That Saves Lives</u>. Pose the following question: Why is diversity important to scientific investigation? After viewing the clip, ask students to come up with one word or phrase that summarizes Dr. Mika Sovak's journey. (Possible answers.: teamwork, diversity, respect, multiple intelligence, creativity, communication). Lead a short discussion about the purpose of Dr. Sovak's story to studying STEM.

EXPLORE: Lesson Description – Materials Needed / Probing or Clarifying Questions:

Procure the following materials prior to the lesson.

- Blindfolds
- Ruler
- Balance/ Scale
- Thermometer
- Graduated Cylinder
- Metal water bottle
- Plastic water bottle
- Soda can
- Rocks
- Vegetables or fruits (frozen and fresh)
- Balls (soccer, basketball, football, baseball, tennis ball)
- Shoe box/cardboard box

Before the investigation ask students: "have you ever been able to identify what was for dinner just by the smell, have you ever reached out to touch something you've never felt before, why did you do that?" Explain to students that there are multiple ways of knowing something and people have different strengths when it comes to learning.

Now ask students to divide into diverse teams of 4. Students should select their own teammates. Be mindful of collaborations by circulating and listening out for comments that may indicate frustration. Lead a discussion asking students what makes their team diverse and how will it lead to successfully completing the investigation.

Give students a blindfold, ruler, balance/scale, thermometer, graduated cylinder and the metal water bottle, plastic water bottle and a soda can. Ask students to design a protocol (a set of rules and guidelines for communicating data) for explaining an object to a person who cannot see the object. Suggest that students create multiple protocols: one using measurements and the instruments for measuring, one using prose and detailed descriptions, and another of their choosing like charades or Pictionary or one that combines the two.

Students will test their protocols: blindfold one teammate, use the protocol to describe the object and have their teammate guess what the object is. Students revise their protocols based on the findings and by answering the following questions:

- 1. Which objects were the easiest to describe? And why?
- 2. Which objects were the easiest to identify? And why?
- 3. Which objects were the most difficult to describe? And why?
- 4. Which objects were the most difficult to identify? And why?

EXPLAIN: Concepts Explained and Vocabulary Defined:

Diversity in STEM is extremely important. But what is diversity? Why would it be useful in science and engineering? (Ask students to brainstorm). Then share one of the following articles:

- Diversity in STEM: What It Is and Why It Matters, Sept 2014 Scientific American
- <u>Why is Diversity Important for Science?</u>, Fall 2014 Society of Physics Students
- <u>Why Diversity in STEM Matters</u> Nov 2021 Packard Fellowships for Science and Engineering
- <u>Why Diversity In Science Is So Important</u> May 2022 Forbes

Ask students to use evidence from the article(s) to write an answer to *why diversity in science and engineering is important*. (Possible answers: broaden perspectives on research questions, more inclusive data, leading to better results) and *how could diversity improve their protocols*?

Vocabulary:

Diversity- a range of different things, variety

ELABORATE: Applications and Extensions:

Prior to starting the elaboration section of this lesson, you will need to gather the following materials (per group):

Collection of rocks

- Vegetables or fruits (frozen and fresh)
- Balls (soccer, basketball, football, baseball, tennis ball)
- Shoe box/cardboard box

Explain to students they are going to compete to identify the items in the box using another team's protocol for identifying objects. The winner is the team whose protocol allows the most items to be identified.

Have teams identify the person who will identify the objects and blindfold* them and make sure their backs are turned away from the box. Using the protocol teammates select one item from the assigned box and describe the object without saying the name of the item. Continue selecting items until they are all identified, or time is called (15-18 minutes max).

Students then reflect on the following questions:

- 1. Which objects were the easiest to describe? And why?
- 2. Which objects were the easiest to identify? And why?
- 3. Which objects were the most difficult to describe? And why?
- 4. Which objects were the most difficult to identify? And why?
- 5. What did you notice about your ability to describe the objects? What was your strength when it comes to communication?
- 6. What did you notice about your ability to identify objects? What was your strength when it comes to listening?
- 7. Did you improve with practice?
- 8. What were the strengths and weaknesses of the protocol you used?
- 9. If you had to create a new team, what skills would you be looking for and why?

*Blindfold unless a protocol requires looking at sketches

EVALUATE:

Formative Monitoring (Questioning / Discussion): Students identifying the objects and responses to questions asked during the lesson

Summative Assessment (Quiz / Project / Report): Protocols, written report and answers to the question will determine if students understand how to create an inclusive protocol and why it is important

Elaborate Further / Reflect: Enrichment: Students identify their strengths as learners using this <u>Multiple Intelligences Survey</u> then they recreate a more diverse team to repeat the experiment by creating a new protocol and comparing it with the winning one.

SOCIAL EMOTIONAL LEARNING ACTIVITY

CASEL Competency: Self- Management

The ability to manage one's emotions, thoughts, and behaviors can be tricky in stressful situations. Ask students to think about a stressful situation when their emotions get the best of them. Then have students pair up and share that stressful situation and describe how they behaved. Ask for volunteers to share out loud with the class. Then tell students they are going to learn a quick and easy strategy for managing their emotions and behaviors in stressful situations. Introduce mountain breathing as a mindful breathing technique. Students visualize 5 mountain peaks, they inhale through the nose as they move up the mountain, hold at the peak, then exhale through the mouth visualizing moving down the mountain, and repeat four more times.

INTERDISCIPLINARY CONNECTIONS/IDEAS

CCSS.ELA-Literacy.WHST.9-20.8: Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the usefulness of each source in answering the research question; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and following a standard format for citation.

CCSS.ELA-LITERACY.SL.8.1: Engage effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grade 8 topics, texts, and issues, building on others' ideas and expressing their own clearly.

Materials Required for This Lesson/Activity		
Quantity	ity Description	
Per group (4-6 students)	Blindfolds	
Per group (4-6 students)	Ruler	
Per group (4-6 students)	Balance/ Scale	
Per group (4-6 students)	Thermometer	

Per group (4-6 students)	Graduated Cylinder
Per group (4-6 students)	Metal water bottle
Per group (4-6 students)	Plastic water bottle
Per group (4-6 students)	Soda can
	Collection of rocks
	Vegetables or fruits (frozen and fresh)
	Balls (soccer, basketball, football, baseball, tennis ball)
	Shoe box/cardboard box

Lesson Created by Stacy Douglas For questions, please contact info@usasciencefestival.org

Science That Saves Lives with Dr. Greg Gage

Grade/ Grade Band 6-12	Topic: Neuroscience		
Brief Lesson Description: Dr. Greg Gage is a neuroscientist, and he believes that neuroscience is for everyone. In this lesson, students create			
a model of a neuron to illustrate how the nerv	ous system sends messages around the body.		
Performance Expectation(s):			
MS-LS1-2 Develop and use a model to describ	e the function of a cell as a whole and ways pa	rts of cells contribute to the function.	
• •	for iterative testing and modification of a prop	osed object, tool, or process such that an	
optimal design can be achieved			
Specific Learning Outcomes:			
Students will create a model of a neuron to illu	istrate how the cell transmits messages in one d	irection and that one neuron can activate the	
next.			
Narrative / Background Information			
Prior Student Knowledge:			
Students should know the structures of the ne	rvous system.		
Students should be able to describe simple ma	chines and how they are used to modify motion	J.	
Science & Engineering Practices:	Disciplinary Core Ideas:	Crosscutting Concepts:	
Developing and Using Models Constructing	LS1.A: Structure and Function Within cells,	Structure and Function Complex and	
explanations and designing Modeling in 6-8	special structures are responsible for	microscopic structures and systems can be	
builds on K-5 experiences and progresses to	particular functions, and the cell membrane	visualized, modeled, and used to describe	
developing, using, and revising models to	forms the boundary that controls what	how their function depends on the	
describe, test, and predict more abstract	enters and leaves the cell. (MS-LS1-2)	relationships among its parts, therefore	
phenomena and design systems.	ETS1.C: Optimizing the Design Solution The	complex natural structures/systems can be	
Develop a model to describe	iterative process of testing the most	analyzed to determine how they function.	
phenomena. (<u>MS-LS1-2</u>)	promising solutions and modifying what is	(MS-LS1-2)	
 Develop a model to generate data 	proposed on the basis of the test results		
to test ideas about designed	leads to greater refinement and ultimately		
-	-		
systems, including those	to an optimal solution. (<u>MS-ETS1-4</u>)		
representing inputs and outputs.			
(<u>MS-ETS1-4</u>)			
	e brain being " hard-wired" is a misconception m		
	neurons creating neural pathways like wires an		
	e description of how neurons function, we need		
rigid and more plastic and can change its wiring. An example is when someone is practicing a new skill, like learning to play the violin, the			

rigid and more plastic and can change its wiring. An example is when someone is practicing a new skill, like learning to play the violin, the system "rewires" parts of the brain that are responsible for fine motor control. Or how people with brain injuries can recruit other parts of the brain to compensate for the damage. This would not be possible if the nervous system was "hard-wired". This activity does not dispel the misconception. As the educator, you need to highlight how change and adjustments are possible in the nervous system such as learning something new or recovering from an injury.

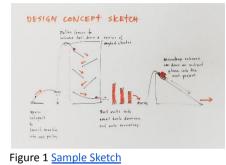
LESSON PLAN – 5-E Model

ENGAGE: Opening Activity – Access Prior Learning / Stimulate Interest / Generate Questions:

Ask the students to organize themselves to complete the wave like they were at a sporting event. After the organize themselves have them write down what happened and was their role in making sure the wave was executed accurately.

Show the students the video: <u>Science That Saves Lives with Dr. Greg Gage</u> and ask them to record 2-3 facts that they believe would relate to the wave.

Lead a discussion about the experiment Dr. Gage shared about how you know to turn around when someone taps you on the shoulder. Highlight: using an animal model (similar nervous system to humans), neuron cell structure and function (axon transmits communication, note he mentions electricity), and ethics of experimenting with animals or on yourself, and the brain machine interface.


EXPLORE: Lesson Description – Materials Needed / Probing or Clarifying Questions:

Prior to the lesson procure as much as you can of the following materials:

- Dominos
- String
- Tape

- Rubber bands
- Clamp stands
- Recyclable materials (from the cafeteria like paper towel tubes, milk containers (crates or cartons), paper bags, cardboard boxes)
- Buckets
- Marbles
- Legos
- Tennis ball/ baseball/ golf ball
- Dixie Cups
- Balloons
- Matchbox cars

You need an assortment of materials that will allow students to get creative. Ask students to bring in items from home. Students are going to build a <u>Rube Goldberg machine</u> /mousetrap machine to model how neurons send messages.

In teams of 4, ask students to sketch a plan to create a machine that will pop a balloon in no more than 5 steps. Once the sketch has been approved (you're looking for 5 or less steps, realistic use of materials based on simple machines: levers, pulleys, inclined plane, wedge, wheel and axle, and screw) the team can build their machine and test it.

EXPLAIN: Concepts Explained and Vocabulary Defined:

Ask students if they've ever wondered why they feel sleepy after the sun sets? Explain that when the sun goes down the pineal gland in the brain secretes the hormone, melatonin, which makes you feel tired. This is just one example of how the brain uses chemical signals and electrical signals through the nervous system to transmit or send messages to other parts of the body. Neurons are composed of 3 parts: cell body, an axon, and dendrites. The cell body is where the nucleus is located; the axon is the long narrow appendage that extends from the cell body to send electrical impulses to the other neurons; the dendrites also extend from the cell body however they are responsible for receiving messages from other neurons at the contact point call a synapse.

Neurons work by sending neurotransmitters (chemicals) across the synapses between the axon of one neuron to the dendrite of another neuron.

Have students label their sketches with the structures of the neuron.

Vocabulary:

Neuron- the cell of the nervous system whose function is to receive sensory inputs from the external environment and sending motor commands to the muscles and transforming and relaying the electrical signals throughout the body.
 Cell Body- contains the nucleus and genetic information of the neuron.
 Axon- long branch that extends from the cell body carrying information via electrical impulses to the next neuron
 Dendrites-short branches extending from the cell body that receives messages from other neurons.
 Synapse- the space between neurons when the dendrites of one neuron meets up with the axon of another neuron.

ELABORATE: Applications and Extensions:

Tell students they are going to connect their neurons with the rest of the class to simulate the nervous system. Allow teams to align their "neuron" machines to travel through the classroom and eventually pop a balloon.

Students should be allowed to revise their design however they should not increase the number of steps in each team's design.

After 15 mins and at least 3 tests to pop the balloon, ask students to write a paragraph explaining how the model simulates the nervous system. If the signal failed to travel around the room and pop the balloon, tell students to diagnose the potential issues and propose solutions.

Lead a discussion using the following questions as a guide: What worked well? What would you do differently next time? What were some of the limitations?

EVALUATE:

Formative Monitoring (Questioning / Discussion): The sketch of the machine assesses student understanding of developing a model to generate data

Summative Assessment (Quiz / Project / Report): Students write a summary about the model and how it illustrates a neuron and the nervous system

Elaborate Further / Reflect: Enrichment: Students will investigate the nervous system of a leech in a <u>virtual lab.</u> They will have the opportunity to observe the response to stimuli and map how the leech's nervous systems responds to touch. **SOCIAL EMOTIONAL LEARNING ACTIVITY**

CASEL Competency: Self Awareness

The abilities to understand one's own emotions, thoughts, and values and how they influence behavior is extremely valuable to understand. In this activity *Circle of Control* students discuss what things they can control (i.e. things I say, helping people) and what things they cannot control (i.e. other people's reactions, the weather). On chart paper create a graphic organizer drawing 2 large concentric circles, label the inner circle **WHAT I CAN CONTROL** and the outer circle **WHAT I CANNOT CONTROL**. Give students 4-6 Post It notes and ask them to write one example per Post It note. Encourage them to have an equal amount of can vs cannot. When they have written their statements, they can place them on the graphic organizer in the appropriate section. Read aloud the examples and challenge students to focus on the things they can control.

INTERDISCIPLINARY CONNECTIONS/IDEAS

RST.6-8.1 – Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and interest, (MS-ETS1-4)

Materials Required for This Lesson/Activity	
Quantity	Description
	Dominos
3 rolls	String
3 rolls	Таре
100	Rubber bands (various sizes)
6-8	Clamp stands
	Recyclable materials (from the cafeteria like paper towel tubes, milk containers (crates or cartons), paper bags, cardboard boxes)
2	Buckets
20	Marbles
	Legos
3	Tennis ball/ baseball/ golf ball
20	Dixie Cups
15-30	Balloons
5	Matchbox cars
10	Wooden dowels
Per student	laptops

Lesson Created by Stacy Douglas For questions, please contact info@usasciencefestival.org